

CONFIDENTIAL

DaaS
Distributed App Access & Security

info@ensurity.com

https://www.ensurity.com/

Ensurity • DaaS (Distributed App Access & Security) Page 1 of 11

Table of Contents

1. What problem are we trying to solve? .. 2
1.1 Secrets management: ... 2
1.2 IP based security limitations: .. 2
1.3 Zero Trust Security: ... 2
1.4 Service-to-service authentication: .. 2
1.5 Scalability: ... 3

2. Ensurity Solutions ... 3
2.1 Secret Management Service ... 3
2.1.1 Encryption Process ... 4
2.1.2 Decryption Process .. 4
2.2 Distributed App Identity Architecture .. 5
2.2.1 X-Sensor ... 6
2.3 Services authentication & claims validation ... 7
2.3.1 Token Revalidation ... 7
2.3.2 Token Management ... 7
2.3.3 Revocation of Tokens ... 8
2.3.4 License Management ... 9
2.3.5 Peer-to-Peer Authentication using HMAC signed JWT tokens ... 9

https://www.ensurity.com/

Ensurity • DaaS (Distributed App Access & Security) Page 2 of 11

1. What problem are we trying to solve?

Cloud adoption is rapidly gaining traction, even among enterprises & government clients
who are looking to benefit from the superior efficiencies of scale and better analytics.
Initial growth in cloud was more monolithic in nature, but the current spurt in growth is
characterized by (a) move to multi-cloud & (b) containers & microservices taking the
processing to the edges & ease of application rollout. The result is the cloud becoming
more distributed & existing identity & security solutions are not sufficient by themselves.

The distributed nature of cloud calls for distributed identity, authentication &
authorization architecture. Ensurity is trying to solve this problem by offering inter-
service authentication using patented non-linear secret sharing.

Following are the key issues that need addressing:

1.1 Secrets management:

In monolithic cloud architecture, secrets are generated & secured inside HSM type
hardware, further protected by perimeter-based security solutions. As the cloud sprawl
increases & microservices are processed near the edge, centralized secrets management
introduces cost & performance inefficiencies.

1.2 IP based security limitations:

Monolithic cloud, like on-prem, relies heavily on IP and port addresses for
communication, authentication & authorization. IP addresses are short-lived in a
distributed cloud environment & would be less effective in security. IAM (Integrated
Access Management) based security model is better suited in this scenario. Dynamic
identity generation models at the application level would result in better security & lower
latencies.

1.3 Zero Trust Security:

Zero Trust is a security concept centered on the belief that organizations should not
automatically trust anything inside or outside its perimeters and instead must verify
anything and everything trying to connect to its systems before granting access.

With Inside network is not same as automatic access & free lateral movement. Privileged
access should lead way to minimal, fine grained access. Every action must be explicitly
authorized. Authorization should be context aware. IP based network access &
privileged access management results in coarse access security. Solutions based on
micro-authentication & access architecture defined by fine grained object identity
management systems will help in achieving Zero Trust Security.

1.4 Service-to-service authentication:

Peer-to-peer services authentication & authorization works better in distributed cloud
environments. However, such authentication needs to be tied to centralized IAM & policy

https://www.ensurity.com/

Ensurity • DaaS (Distributed App Access & Security) Page 3 of 11

directives. Stateless token-based models are used in transmitting stateless
authentication & authorization.

1.5 Scalability:

Services need to authenticate & authorize to each other at ultra-scale. Rising sprawl &
distribution of services further increases the complexity. JWT tokens using OAuth2/OIDC
are good for distributed, stateless authentication, but there are a few key issues:

a) Loss of JWT tokens: There is no second defense against loss of JWT tokens – they are
bearer tokens, hence a strong second line of defense is required in case of a loss.
Currently, JWT tokens are made short-lived to minimize the risk of loss. Short-
duration tokens though (i) limit flexibility by not allowing long duration tokens that
may be needed in some cases (ii) require additional hops for regeneration of tokens
(iii) need two tier token structures with intermediation by API gateways & (iv) does
not fully eliminate the risk.

b) Lack of strong encryption: JWT tokens are just Base64 encoded. Adding stronger
encryption currently requires additional overheads & secrets management.

Ensurity offers JWT tokens that can be managed dynamically without being constrained
by the limitations of security, scope & latency thus resolving these key issues and offering
a scalable solution.

2. Ensurity Solutions

2.1 Secret Management Service

Ensurity EnSafe is a secure dynamic infrastructure for managing secrets by leveraging
trusted identities across distributed cloud infrastructure. As applications & microservices
sprawl across clouds & move closer to edge, centralized secrets management based on
HSM type of hardware is not effective. EnSafe is a software-based secrets management
solution that can be containerized & managed on enterprise’s own hardware
infrastructure, closer to the applications.

https://www.ensurity.com/

Ensurity • DaaS (Distributed App Access & Security) Page 4 of 11

EnSafe is a ‘Secrets Management Service’ that stores, accesses and distributes dynamic
secrets such as tokens, passwords, certificates, and encryption keys, to client & service
applications. EnSafe can also be used to store customer data such as credit cards.

EnSafe assures security & privacy as none of the secrets are stored completely on the
EnSafe databases. Only partial elements of the secrets are stored on EnSafe servers. A
breach of EnSafe does not compromise client secrets. Similarly, applications are also
secure since they do not store full secrets.

2.1.1 Encryption Process

Let us look at a scenario where an application is trying to send an encrypted
message/secret to another application.

• Application 1 submits message M to EnSafe for encryption.
• EnSafe generates a Dynamic Key [k]. EnSafe encrypts the message M with the key

k. The encrypted message eM is sent back to the Application 1.
• EnSafe splits the key k into token shares using the Non-Linear Secret Share (NLSS)

methods. Following this, the key k is destroyed.
• During the Token Generation, as per the configuration, [t1] and [t2] will be

created.
• EnSafe transmits [t1] Application 1; and securely stores [t2] internally in a

database.

2.1.2 Decryption Process

Services send a message to EnSafe for decryption.

https://www.ensurity.com/

Ensurity • DaaS (Distributed App Access & Security) Page 5 of 11

• Application 1 sends the encrypted message eM & t1 to Application 2.
• Application 2 submits t1 & eM to EnSafe.
• To generate the original Key [k], EnSafe extracts the [t2] secure share from the

internal database and recreates the original key [k] using NLSS.
• Once the original Key [k] is generated, using the configured encryption engine [e],

the ciphered message will be decrypted and pushed back to the Application 2.

2.2 Distributed App Identity Architecture

Zero Trust Security architectureAll applications (host applications, containers, services,
functions & workloads) are given a unique, normalized Ensurity identity. Using a
standard, distributed identity architecture is important for an identity driven security
architecture.

A unique ID is created for every Host app. The UID is a signed JSON document, comprising
of static & dynamic app metadata. Every instance or microservice created out of the Host
app gets a derived ID that is a function of the Host UID as well as own static & dynamic
metadata. The tiered ID architecture will make it easier to integrate distributed identity
systems.

Ensurity Security Management Service (SMS) provides controlled access to tokens,
passwords, certificates, encryption keys for protecting secrets and other sensitive data.

https://www.ensurity.com/

Ensurity • DaaS (Distributed App Access & Security) Page 6 of 11

With normalized, Ensurity identities (a) all apps can authenticate & communicate across
the cloud sprawl (b) can communicate over L3, L4 & L7 modes and (b) access control is
fine grained, resulting in Zero Trust Security environment.

2.2.1 X-Sensor

X-Sensor is a proxy layer for Microservices to be able to communicate with CMS server.

The X-Sensor performs the following processes:

• Setup Functional Rules & Firewall settings for Microservices, as defined in the
CMS

• Encryption engine (for L3, L4 and L7 layers)
• Obtain Key from CMS
• Layer-7 authentication
• Identity of X-Sensor
• Identity of Microservice Applications
• Identity of User

https://www.ensurity.com/

Ensurity • DaaS (Distributed App Access & Security) Page 7 of 11

• Peer-to-peer authentication between Microservices

2.3 Services authentication & claims validation

Stateless tokens like JWT tokens are bearer tokens. Ensurity’s solution addresses some
clear gaps in the stateless (JWT) token architecture. With Ensurity’s solution, JWT tokens
can be managed dynamically without being constrained by the limitations of security,
scope & latency.

2.3.1 Token Revalidation

Let us look at a scenario where Client-Application ‘C1’ presents claims in the form of JWT
token T to Service Application ‘S1’. A loss of the token T in transit will impede C1 from
accessing S1. C1 needs to revalidate identity with IdP server to gain an alternative token.
Furthermore, if the token is stolen by a third app C2, C2 can successfully make claims to
S1. To verify that the token bearer is the originally intended app C1, Ensurity’s solution
creates an extra sense of T which can be used dynamically between both the apps CA &
SA without needing to check the state with a server. The process of how the extra secret
sense is embedded into the JWT token is explained in the section 2.3.2.

2.3.2 Token Management

On receipt of Service Request by the User, the Client App (CA) initiates a request for
Token from the IdP server. During the request, the Client App generates a Secret [s] and
generates additional secrets — [s1] and [s2] from [s]; and appends [s] and [s1] to the
request. After validating the identity of the Client App, the IdP server generates & issues
a JWT Token. Before issuing the token, IdP server embeds [s] & [s1] inside the token - [s]
& [s1] becomes part of the cryptographically signed stateless token.

In order to access the Service App, the Client App will furnish the Token to the Service
App for validation and access. Upon receiving the Token, the Service App first validates
the Token for properness & signatures. The Service App also parses the Token for [s] &
[s1]. The Service App then initiates a Challenge-Response schema with the Client App
using [s] & [s1]. The Client App responds to the challenge using the secret retained with
itself [s2]. Both the Service & Client Apps are able to complete the Challenge-Response
process without needing to share [s1] or [s2] with each other at point of time.

Let us look at a scenario wherein the JWT Token is lost. The Client App is able to request
a replacement token from the IdP server by proving that it has the secret [s1] using the
same Challenge-Response mechanism.

In another scenario where the Token is stolen by an impersonating app CA1. While CA1
is able to provide proof of the bearer token, it is unable to offer the extra proof of the
secret [s1]. Thus, the loss of the bearer token does not result in the loss of the access.
IdP servers can issue long-duration JWT Tokens without worrying about the loss of the
tokens. Replacement of tokens is also relatively easy without needing to go through the
IAM process again. This eliminates the need for an additional layer of refresh tokens &
also API gateways validating tokens.

https://www.ensurity.com/

Ensurity • DaaS (Distributed App Access & Security) Page 8 of 11

2.3.3 Revocation of Tokens

Section 2.3.2 explained how peer-to-peer validation is made possible for JWT tokens. The
Tokens sometimes need to be revoked too by a centralized authority. For revocation
scenario, secret [s] is split into three secrets [s1], [s2] & [s3] (as opposed to two secrets
explained in 2.3.2). While the rest of the process remains the same as in 2.3.2, the
additional secret [s3] can be stored at the IdP server or any other trusted server. To check
if tokens are revoked or not, the Service App will revalidate also with the trusted server
using a similar Challenge-Response schema as detailed in 2.3.2.

https://www.ensurity.com/

Ensurity • DaaS (Distributed App Access & Security) Page 9 of 11

2.3.4 License Management

Another tricky issue is management of licenses (how many instances to be run or how
many times an instance can be accessed). This is typically seen during trials or PoCs of
software. With Ensurity solution, one access (JWT) token can be used to create multiple
licenses using the NLSS secret shares. For example, one token T1 can be used to create
multiple pairs of split shares T1, T2; T3, T4; T5, T6; …

Once the client application runs out of the tags, license automatically expires – there is
no need to create multiple JWT tokens for the same. All pairs are orthogonally different.

Similarly, same JWT token can be split into multiple secret share pairs. Different client
applications can use different pairs to access the service application. This is particularly
useful in scenarios where a service application gives same access rights to multiple client
applications (well defined access). Instead of creating multiple JWT tokens for each client
application, same token can be used by many client applications.

2.3.5 Peer-to-Peer Authentication using HMAC signed JWT tokens

Secrets management is a challenge in services authentication. JWT tokens can be signed
either by HMAC or RSA/ECDSA signatures. HMAC signatures are cheaper & easier to scale
in a distributed cloud environment. However, HMAC is not commonly used due to key
drawbacks (a) secure sharing of HMAC symmetric keys & (b) securing the password
secrets that derive HMAC keys. To resolve these issues, IdP server signs the JWT tokens
with HMAC based on the secret.

https://www.ensurity.com/

Ensurity • DaaS (Distributed App Access & Security) Page 10 of 11

2.3.5.1 Key transmission

HMAC keys are transmitted over the network as split secret shares. Since the NLSS
algorithm is keyless in nature, HMAC keys can be shared over the network to the service
application without the need for additional key management.

The IdP server splits the key [k] into two secrets [k1] & [k2]. [k1] is embedded into the
JWT token. [k2] is transmitted to the Service App. The IdP server deletes the key
subsequently (the server does not necessarily need to store the HMAC secrets anymore).
Upon receiving the JWT token from Client app, the Service App parses the token for [k1]
& combines with [k2] to recreate the original key [k]. This process ensures that the key
[k] is securely transmitted. Moreover, the decryption happens only with the presentation
of the token.

